Lines

Questions

Question 1. See the back of this sheet.

Question 2. Find parametric equations for the line contained in the plane $x+y+z=20$ which also intersects the line $x=y=2 z$ at a right angle.

Question 3. Let L_{1} be the line passing through $A(1,-2,4)$ and $B(2,1,3)$, and let L_{2} be the line passing through $C(0,3,-3)$ and $D(2,4,1)$.

Are L_{1}, L_{2} parallel, skew, or intersecting? If they intersect, where do they intersect? If not, how far apart are they?

The following are solutions to the problem
"Find the distance d between the point $P(1,-2,2)$ and the line $\mathbf{r}(t)=\langle 3+3 t, 2-t, 5 t\rangle$."
Figure out what is happening in each one.
(1) Solution 1:

$$
\begin{aligned}
D^{2} & =(2+3 t)^{2}+(4-t)^{2}+(5 t-2)^{2} \\
& =35 t^{2}-16 t+24 \\
\frac{\mathrm{~d}}{\mathrm{~d} t}\left(D^{2}\right) & =70 t-16=0 \\
t & =8 / 35 \\
d & =D_{\min }=\sqrt{35(8 / 35)^{2}-16(8 / 35)+24}=2 \sqrt{194 / 35}
\end{aligned}
$$

(2) Solution 2:

$$
\begin{aligned}
3(x-1)-(y+2)+5(z-2) & =0 \\
3 x-y+5 z-15 & =0 \\
3(3+3 t)-(2-t)+5(5 t)-15 & =0 \\
t & =8 / 35 \\
d & =\sqrt{(3+3(8 / 35)-1)^{2}+(2-(8 / 35)+2)^{2}+(5(8 / 35)-2)^{2}}=2 \sqrt{194 / 35 .}
\end{aligned}
$$

(3) Solution 3:

$$
\begin{aligned}
\langle 1,-2,2\rangle-\langle 3,2,0\rangle & =\langle-2,-4,2\rangle \\
\langle-2,-4,2\rangle \times\langle 3,-1,5\rangle & =\langle-18,16,14\rangle \\
|\langle-18,16,14\rangle| & =2 \sqrt{194} \\
|\langle 3,-1,5\rangle| & =\sqrt{35} \\
d & =2 \sqrt{194 / 35} .
\end{aligned}
$$

(4) Solution 4:

$$
\begin{aligned}
\langle 1,-2,2\rangle-\langle 3,2,0\rangle & =\langle-2,-4,2\rangle \\
(\langle 3,-1,5\rangle \times\langle-2,-4,2\rangle) \times\langle 3,-1,5\rangle & =\langle 94,132,-30\rangle=2\langle 47,66,-15\rangle \\
\frac{\langle 47,66,-15\rangle \cdot\langle-2,-4,2\rangle}{|\langle 47,66,-15\rangle|} & =-388 / \sqrt{6790} \\
d & =|-388 / \sqrt{6790}|=2 \sqrt{194 / 35} .
\end{aligned}
$$

(5) Solution 5:

$$
\begin{aligned}
\langle 2+3 t, 4-t, 5 t-2\rangle \cdot\langle 3,-1,5\rangle & =0 \\
35 t-8 & =0 \\
t & =8 / 35 \\
d & =\sqrt{(3+3(8 / 35)-1)^{2}+(2-(8 / 35)+2)^{2}+(5(8 / 35)-2)^{2}}=2 \sqrt{194 / 35}
\end{aligned}
$$

(6) Solution 6:

$$
\begin{aligned}
\langle 1,-2,2\rangle-\langle 3,2,0\rangle & =\langle-2,-4,2\rangle \\
\frac{\langle 3,-1,5\rangle \cdot\langle-2,-4,2\rangle}{\langle 3,-1,5\rangle \cdot\langle 3,-1,5\rangle}\langle 3,-1,5\rangle & =\frac{8}{35}\langle 3,-1,5\rangle \\
\langle-2,-4,2\rangle-\frac{8}{35}\langle 3,-1,5\rangle & =\left\langle-\frac{94}{35},-\frac{132}{35}, \frac{6}{7}\right\rangle \\
\left|\left\langle-\frac{94}{35},-\frac{132}{35}, \frac{6}{7}\right\rangle\right| & =2 \sqrt{194 / 35 .}
\end{aligned}
$$

